			Kaolinite ^(a)							
	Mica (Å	(a)(b) (a)	Montm onite (Å	norill- e ^(c) .)	Dio heo	octa- dral (Å	Trio hed	cta- ral	Chlor (Å	ite ^(e)
Octahedral O, OH Tetrahedral O Interlayer OH Mg	0.0 1.1 2.7 3.2 5.0	0 2 0 8 0	0.0 1.0 2.7 3.2 7.7	0 9 0 4 0		3·2 4·3 0·6 0·0	7 7. 0 0		0.0 1.0 2.7 3.2 6.0 7.0	0 5 1 6 0 5
a b c sin β	(Å) 5·189 8·995 20·014	(°)	(Å) 5·21 9·02 14·40	(°)	(Å) 5·14 8·93 7·13	(°)	(Å) 5·55 9·61 7·20	(°)	(Å) 5·33 9·24 14·10	(°)
α β γ		90 95·18 90		90 97 90		91·6 104·8 89·9		90 90 90		90 97 90

Table 3. Z_s Atomic coordinates perpendicular to the layers and lattice constants of clay minerals

(a) Atomic parameters from Jackson & West (1933).

(b) Lattice parameters from Radoslovich (1960).

(c) From MacEwan, Ruiz Amil & Brown (1961).

(d) From Brindley (1961a).

(e) From Brindley (1961b).

References

- BRINDLEY, G. W. (1961*a*). *The X-ray Identification and Crystal Structure of Clay Minerals*. G. Brown, Editor. p. 51. London: Mineralogical Society.
- BRINDLEY, G. W. (1961b). The X-ray Identification and Crystal Structure of Clay Minerals. G. Brown, Editor. p. 242. London: Mineralogical Society.

BROWN, G. (1955). Miner. Mag. 30, 675.

JACKSON, W.W. & WEST, J. (1933). Z. Kristallogr. 85, 160. KLUG, H. P. & ALEXANDER, L. E. (1954). X-ray Diffraction Procedures. New York: John Wiley.

- MACEWAN, D. M. C. (1956). Kolloid Z. 149, 96.
- MACEWAN, D. M. C., RUIZ AMIL, A. & BROWN, G. (1961). The X-ray Identification and Crystal Structure of Clay Minerals. G. Brown, Editor. p. 393. London: Mineralogical Society.

RADOSLOVICH, E.W. (1960). Acta Cryst. 13, 919.

Acta Cryst. (1966). 21, 838

Th₃N₄ crystal structure and comparison with that of Th₂N₂O.* By ROBERT BENZ, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico, U.S.A. and W.H.ZACHARIASEN, University of Chicago, Illinois, U.S.A.

(Received 31 May 1966)

The existence of Th₃N₄ has been reported (Matignon & Delépine, 1907) and later substantiated (Neumann, Kroeger & Haebler, 1932) by a different method of chemical analysis. The results reported in what follows were obtained with Th₃N₄ prepared by equilibrating ThN powder contained in an induction-heated tungsten crucible with 0.13 atm. nitrogen at 1320°. The composition of the product was determined both by weight gain as well as by ignition to ThO₂. The N: Th ratio was thus found to be 1.33 ± 0.03 . Thorium sesquioxynitride, Th₂N₂O, was prepared by equilibration of the compacted mixture $3ThN + ThO_2$ with 2 atm. nitrogen at 1700°C. The Th content of this product was determined by ignition to ThO₂; the O:Th ratio was taken to be the same as that of the initial mixture, and nitrogen was computed by difference. The final composition thus obtained was Th₂N_{2·04±0·06}O. An X-ray diffraction powder pattern of a sample was found to be indistinguishable from that reported earlier (Zachariasen, 1949) for Th₂N₃ with the hexagonal lattice parameters $a_0 = 3.8833 \pm 0.0002$, $c_0 = 6.1870 \pm 0.0003$ Å. We did not succeed in obtaining N:Th ratios in excess of 1.33 ± 0.03 by reacting thorium or ThN with nitrogen at pressures up to 2 atm.; therefore, the Th₂N₃ phase was not obtained. Although we did not investigate sufficiently high nitrogen pressures to confirm or exclude the existence of the Th₂N₃ phase, all the experimental results suggest the material previously described as Th₂N₃ was the same as the Th₂N₂O phase described above.

The X-ray diffraction data obtained from a powder pattern of Th_3N_4 are shown in Table 1. The observed intensities are given for two samples I and II. In sample 1, the intensities are modified by an appreciable preferential orientation.

The observed values of $\sin^2\theta$ correspond to a rhombohedral lattice with $a_0 = 9.398 \pm 0.002$ Å, $\alpha = 23.78 \pm 0.01^\circ$. The dimensions of the corresponding hexagonal cell are $a_0 = 3.871 \pm 0.001$, $c_0 = 27.385 \pm 0.005$ Å.

^{*} This work was performed under the auspices of the U.S. Atomic Energy Commission.

Table 1. X-ray diffraction data for Th₃N₄ (Cu $K\alpha$; $\lambda = 1.5405$ Å) *

	9- I K	. ,			
<u>h k 1</u>	sin²0 x	104	F	Relative Inte	nsities
	caled.	obs.	c	bs.	calcd.
			Ι.	II.	
003 006	285				0.0
101	536 560	545 567	v vw-	w+ VV-	33.8 14.2
009	641	649	vs	W	45.3
104	654	666	m	s	77.7
015 107	726 916	735 927	m VW-	m VW-	4.9
018	1034	1047	w	v	18.2
		1.206			67
0 1 11	1485	1,492	vvv	vvv	2.4
110 113	1584 1655	1600	m	S	16.7
0015	1780				0.0
1015	1865	1 9 21.	_	_	∮4.7
116	1869	1004	<u>D1</u>		0.0
0 1 14	2078	2088	w+	W	4.9
021	2120	2144	w	vw	{ ^{1.4}
202	2143)				(0.6
119	2225	2246	s	s	13.2
024	2238)				(4.0
205	2309 2499	2325	w+	wn	5.7 0.5
1016	2553				(0.5
0 0 18	2563	2574	m	vw+	2.4
208	2618	2647	v1/	vw+	1.9
1112	2723 2814	2847	vw	vw-	0.1
0 2 10	2903	2911	vvw	VW-	1.3
2011	3069	3087	trace		0.6
1 1 15	3364)	2205			∫ 0.1
1019	3384)	3397	vw-	VVW	10.7
0213	3449	3476	w	w+	3.3
0021 2014	3489 3662	3676	w	w	2.5
0120	3692	277 2			0.3
122	3727	3113	w	¥	0.6
214	3822	3841	m	ms	3.6
217	4083	3900	14	14	0.3
0216	4137	10.59			∫ ^{0.2}
1118	4147)	41,0	3	1113	(4.9
128	4202	4201	trace	vw-	1.2
1022	4357	4373	m	w	∫ ^{1.5}
2017	4398)				(0.3
2110 0024	4487 4557	4503	vw	VW	0.8 0.0
1211	4653	4712	Um	v	0.4
300	4751	4756	win	wm	1.9
303	4822				0.0
0219	4968				(2.2
2 1 13	5032	5052	m	m	}
306	5036) 5072				(0.1
2117 7757	5246)				(1.9
+-	E074	5262	wm	¥	
309	5392	5418	m	m	2.3
1025	5472	,.10			0.1
0 0 27	5767	5777	W+	vw	0.3
1026	5876				0.2
3012	5890				0.0

* Calc. relative intensities proportional to $\frac{1+\cos^2 2\theta}{\sin^2 \theta \cos \theta} p|F|^2$

where p = multiplicity and F = structure factor.

	7	Table 1	(cont.)	
2022 2117 1124	5941 5982	5975	W+	¥	{0.6 0.3 0.0
2023 220 223	6297 6335	6328	wm	wm	{0.4 0.5
3015 2119 226	6531 6551 6620	6562	vw	vw	0.0 0.1 0.0
1 0 28	6730	6746	vw	-	0.0
2120 311 312 229	6860 6871 6895 6976)	6893	vvw	vw	0.0 0.1 0.0 (0.6
314	6990	6986	S	s	(o.4
2°0 25 3 1 5	7056 7061	7069	win	m	{0.0 0.6
0 0 30 1 0 29 3 1 7 3 0 18 1 1 27 3 1 8 2 0 26	7120 7181 7251 7314 7353 7369 7460	7347	s	S	0.0 0.0 0.1 (1.4 1.3 0.4 0.1
2 2 12 2 1 22 3 1 10 3 1 11	7474 7524 7654 7820	7533	m	m	0.0 1.2 0.3 0.1
2123	7880	7885	WILL	w	0.7
2215	8115}	8133	m	W-	{0.0
1 0 31 1 3 13 3 0 21 0 2 28	8131) 8200 8240 8314	8190	v	m	(0.1 0.0 0.0 0.1
3114	8414	8419	w+	m	0.6
0 4 2 4 0 4 0 0 33	8478 8573 8615	8587	w	w	0.0 0.5 0.0
0 1 32 2-1 25 0 4 5	8629 8640 8644	8639	m	w	{0.6 0.2 0.7
1 1 30 2 0 29 4 0 7 1 3 16 2 2 18 0 4 8 1 2 26 3 1 17 4 0 10 3 0 24	8704 8765 8834 8888 8998 8953 9043 9149 9238 9308	8904 9055 9169	M VVW VVW	m+ - Vvr	0.0 0.1 0.1 (0.2 3.1 0.4 0.6 0.6 0.5 0.0
0 4 11 1 0 34 0 2 31	9404 9673 9714	9716	w	w	0.3 0.6 4.5
1 3 19	9719)				(2.1
4013 2221	9784 9824	9785	w	w	4.7 0.0

Both the cell volume and the observed intensities require one stoichiometric molecule per rhombohedral cell, and the calculated density is accordingly $\rho = 10.55$ g.cm⁻³.

The observed intensities demand that the three metal atoms per rhombohedral cell be in positions (000) and $\pm (zzz)$ with z=2/9. Thus, the thorium atoms have the close-packed configuration ABABCACACA--- observed in the samarium metal structure.

The nitrogen atoms have too small an effect on the intensities to permit a direct determination of their positions. However, on the basis of chemical stoichiometry and assuming an ordered structure, spatial considerations require that they lie on the threefold axis with one set occupying octahedral and the other tetrahedral holes of the closepacked metal configuration.

The structure thus arrived at is

Space group R3m					
Hexagonal	Rhombohedral				
Description	Description				
$(000)(\frac{1}{3}\frac{2}{3}\frac{1}{3})(\frac{2}{3}\frac{1}{3}\frac{2}{3})^+$					
3 Th (I) (000)	1 Th (I) (000)				
6 Th (II) $\pm (00z_1)$	2 Th (II) $\pm (z_1 z_1 z_1)$				
6 N (I) $\pm (00z_2)$	$2 N (I) \pm (z_2 z_2 z_2)$				
6 N (II) $\pm (00z_3)$	$2 N (II) \pm (z_3 z_3 z_3)$				

with $z_1 = 0.222 \pm 0.003$, $z_2 \simeq 0.137$, $z_3 \simeq 0.389$.

The interatomic distances for this assumed structure are

Th (I)–6 N (II) 2·70 Å	Th (II)-4 N (I) 2.34 Å
-6 Th (II) 3.77	-3 N (II) 2.70
-6 Th (I) 3.87	-3 Th (I) 3.77
	-3 Th (II) 3.77
	-6 Th (II) 3.87

The Th₃N₄ structure is closely related to that of Th₂N₂O previously reported (Zachariasen, 1949) as Th₂N₃. In the latter structure the metal atoms are in simple hexagonal close-packing so that the *c* axis is twice the separation of hexagonal layers, whereas the *c* axis is nine times the layer distance in the Th₃N₄ structure. As shown below, the hexagonal *a* axis and the layer separation are slightly smaller for the Th₃N₄ phase:

Th_2N_2O Th_3N_4 $a_0 = 3.8833$ Å $a_0 = 3.871$ Å $c_0 = 6.1870 = 2 \times 3.0935$ Å $c_0 = 27.385 = 9 \times 3.043$ Å

The atomic positions of the Th₂N₂O structure are

2 Th in $\pm (\frac{1}{3}z_1)$ with $z_1 = 0.250 \pm 0.006$ 2 N in $\pm (\frac{1}{3}z_2)$ with $z_2 \simeq 0.631$ 1 O in (000).

The N atoms occupy tetrahedral and the O atoms octahedral holes of the close-packed metal structure. The interatomic distances are

Thus, the configuration about the Th (II) atoms of the Th_3N_4 structure is almost identical with that of the Th_2N_2O phase. However, the Th (I) atoms form only six bonds to nitrogen atoms, all occupying octahedral holes.

References

MATIGNON, C. & DELÉPINE, M. (1907). Ann. Chim. Phys. 8, 130.

NEUMANN, B., KROEGER, C. & HAEBLER, H. (1932). Z. anorg. allgem. Chem. 207, 145.

ZACHARIASEN, W. H. (1949). Acta Cryst. 2, 388.

Acta Cryst. (1966). 21, 840

X-ray examination of some rare-earth-containing binary alloy systems. By J. L. MORIARTY, J. E. HUMPHREYS, R.O. GORDON* and N.C. BAENZIGER[†], Lunex Company, Pleasant Valley, Iowa, U.S.A.

(Received 23 May 1966)

Despite the intensive efforts which have been expended on the study of rare earth intermetallic compounds in recent years, there remains a large number of binary alloy systems yet to be investigated. Upon reviewing compendia by Gschneidner (1961) and McMasters & Gschneidner (1964), certain patterns of omission were observed, these usually occurring where one or both of the component elements are difficult to handle with ordinary melting techniques. In particular, most investigators seem to have avoided lanthanides with: high vapor pressures, high oxygen affinity. high melting points, divalent character, and those which are relatively scarce. The general approach followed during the present study was that described in earlier work by Moriarty (1960). Structural data for compounds formed in similar systems with gadolinium and dysprosium, and holmium and erbium can be found in reports by Baenziger & Moriarty (1961) and Moriarty, Gordon & Humphreys (1965) respectively.

Alloys were prepared by blending stoichiometric proportions of the components and either arc-melting them on a water cooled copper hearth or encapsulating them in tantalum crucibles and heating these in a tube or induction furnace. All procedures employed a protective atmosphere of dry argon gas. Each specimen was repeatedly remelted to improve homogeneity. Final weights differed from initial weights by less than 1.0%. Purities of the metals used were: rare earths, at least 99.8%; all others greater than 98.5%.

In all cases the phases herein reported were identified by indexing the X-ray diffraction powder patterns. Diffraction equipment included a basic Norelco X-ray unit, using either filtered copper $K\alpha$ (Cu $K\alpha_1 = 1.54051$, Cu $K\alpha_2 = 1.54433$ Å) or iron $K\alpha$ (Fe $K\alpha_1 = 1.93597$, Fe $K\alpha_2 = 1.93991$ Å) radiation, 114.6 mm Debye-Scherrer cameras, and either Ansco Superay C or Kodak Type KK film. Suitable photographs were made at 20 to 25°C of the alloy specimens in an annealed condition. Filings were annealed in Vycor capillaries previously 'gettered' with zirconium wire to minimize oxidation. Some alloys were 'bulk' annealed in small sealed Vycor tubes and then crushed.

Results of this study are given in Tables 1 through 4. The lattice constants were calculated under the direction of one of us (N.C.B.) with an IBM 7044 computer from back-reflection data, with the use of an analytical leastsquares program written by Miss Carol Valley at State University of Iowa.

^{*} Present address: Yale University, New Haven, Connecticut, U.S.A.

[†] Present address: State University of Iowa, Iowa City, Iowa, U.S.A.